Apr 22, 2024  
2020-2021 Graduate Catalogue 
2020-2021 Graduate Catalogue Archived Catalogue

CSC 577 - Pattern Recognition

Course Description: This course introduces pattern recognition methods and theory using conventional statistical approaches, neural networks, fuzzy logic, support vectors, and linear principal component analysis (PCA). The course also presents methods for non-linear PCA, clustering, and feature extraction. Students implement algorithms; apply methods to selected problems, and to document findings.

Credit Hours: 3

Corequisite Courses: None
Prerequisite Courses: CSC 340 with minimum grade of C
Additional Restrictions/ Requirements: Prerequisite course or equivalent
Course Repeatability Course may not be repeated


Equivalent Courses: None
Undergraduate Crosslisting: None
Additional Course Fees: None
Course Attribute: None

Click here for the Fall 2024 Class Schedule.